JOACItIM VON ZUR GATHEN

نویسنده

  • MARK GIESBRECHT
چکیده

2 • • • , o q r L 1 I fFq C_ Fq, are finite fields, a E Fq, , and the conjugates a, aq , aq , of a form a basis for Fq, as a vector space over Fq, then this is called a normal basis. We call a a normal element (of Fq. over Fq). Normal bases are useful for implementing fast ari thmetic in Fq, , in par t icular exponentlation. Of special interest is q = 2 and n reasonably large; as an example, the Diffie &: t tel lman key exchange is based on exponentiat ion in F2-. Algori thms and possible MOS implementat ions are given in Laws ~ Rushforth 1971, Wang et al. 1985, Beth et al. 1986, Agnew et al. 1988, Stinson 1990. The basic assumpt ion in tha t work is tha t comput ing qth powers in Fq, is for free (i.e., of negligible cost compared to a general multiplication in Fq, ; only q = 2 is considered). The assumption can be justified if a normal element is given, since then for an a rb i t r a ry q ' ~l = r'-,o<_i<~ uia E Fq., with uo . . . . . u~i E Fq, we helve

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiplicative Order of Gauss Periods

We obtain a lower bound on the multiplicative order of Gauss periods which generate normal bases over finite fields. This bound improves the previous bound of J. von zur Gathen and I. E. Shparlinski.

متن کامل

GCD of Many Integers

A probabilistic algorithm is exhibited that calculates the gcd of many integers using gcds of pairs of integers; the expected number of pairwise gcds required is less than two.

متن کامل

Efficient parallel exponentiation in GF(qn) using normal basis representations

Von zur Gathen proposed an efficient parallel exponentiation algorithm in finite fields using normal basis representations. In this paper we present a processor-efficient parallel exponentiation algorithm in GF(qn) which improves upon von zur Gathen’s algorithm. We also show that exponentiation in GF(qn) can be done in O((log2 n) 2/ logq n) time using n/(log2 n) 2 processors. Hence we get a pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008